Définition nabla

Citations Synonymes Définition
Nabla (Nom commun)
[na.bla]
  • (Mathématiques) Opérateur différentiel pouvant représenter le gradient, la divergence ou le rotationnel, suivant la manière dont il est utilisé.
  • (Argot polytechnicien) Objet quelconque, truc, machin.
Informations complémentaires

Le nabla est un symbole mathématique (∇) utilisé principalement en calcul vectoriel pour représenter les opérations de gradient, de divergence, et de rotationnel sur des champs scalaires et vectoriels. Son apparence, un triangle inversé, est souvent interprétée comme une flèche pointant vers le bas. Le gradient d'une fonction scalaire, obtenu en appliquant l'opérateur nabla à cette fonction, donne un champ vectoriel qui pointe dans la direction de l'augmentation la plus rapide de la fonction et dont la magnitude est la pente de l'augmentation. Pour un champ vectoriel, l'application de nabla peut produire soit la divergence, soit le rotationnel. La divergence mesure la quantité par laquelle le champ vectoriel se disperse ou se concentre à partir d'un point donné, tandis que le rotationnel mesure le taux et l'axe de rotation du champ autour d'un point.

Le terme "nabla" a été adopté dans le contexte mathématique au 19e siècle et est dérivé du mot grec "nablum", qui désigne une sorte de harpe antique ayant une forme triangulaire. Cette origine reflète la forme distinctive du symbole. L'opérateur nabla joue un rôle crucial dans de nombreux domaines de la physique, notamment en électromagnétisme et en mécanique des fluides, où ces opérations aident à décrire le comportement des champs électriques, magnétiques, et des flux de fluides. En ingénierie et en sciences, comprendre comment manipuler l'opérateur nabla permet de résoudre des équations qui modélisent des phénomènes physiques, offrant des insights cruciaux sur la manière dont les forces agissent dans l'espace.